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What sets QM apart

Classical physics aims at an objective description
description of the real world

Quantum mechanics quantifies our knowledgeyou want of
the world

It recognises that our knowledge derives from measurements
And it acknowledges that to measure is inevitably to disturb
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To measure is to disturb

You want to image a virus?

Head to SLAC for large flux of coherent short λ radiation

Virus scatters X-rays, which form diffraction pattern

From pattern the image is computed
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To measure is to disturb

You want to image a virus?

Head to SLAC for large flux of coherent short λ radiation

Virus scatters X-rays, which form diffraction pattern

From pattern the image is computed

The sample is totally destroyed by the pulse:

to image can be to destroy
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Probabilities & amplitudes

QM ⇒ the statistics of repeated measurement via P (q)

P (q) used widely in the physical and social sciences
But QM is unique in how it computes P (q)

QM first computes complex A(q) and uses P (q) = |A(q)|2

The quantum amplitude contains more information than
P (q): A(q) =

√

P (q) eiφ
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2-state systems

Simplest system is a ‘2-state system’ a.k.a. ‘qubit’

‘2-state’ because ideal measurements have 2 outcomes:

call them up/down, or in/out, or ↑↓
We focus on qubits but results generalise
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States & state vectors

In state |ψ〉 the qubit has an amplitude a to be measured
up, and amplitude b to be measured down

So |ψ〉 ↔ (a, b) a pair of complex numbers

So qubit states are complex 2-vectors

points r in real space are real 3-vectors (x, y, z)
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Measurement & wavefunction collapse

QM ⇒ statistics of measurements

But it doesnt want to engage with the defects of our
equipment, the cack-handedness of my practical partner!

So it deals with ideal (reproducible) measurements

After measuring Q with result q, a 2nd measurement is
certain to yield q

The state in which q is certain is called |q〉
An ideal measurement of Q jogs the system into |q〉

For qubits we write

|ψ〉 = a| ↑〉+ b| ↓〉measure−→
{

| ↑〉 with prob |a|2
| ↓〉 with prob |b|2

(a, b) = a(1, 0) + b(0, 1)
measure−→ (1, 0) or (0, 1)

‘we call this collapse of the wavefunction’
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Spin-half

Electrons, protons, neutrons, etc are tiny gyros

They spin at a constant rate, but you can change the
direction of spin

If you measure any component of angular momentum Si,
the only answers are ±1

2
~

So these spins are perfect qubits
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spin-half

The states | ↑ z〉 & | ↓ z〉 that the spin is jogged into on
measuring Sz are naturally different from the states | ↑ x〉
& | ↓ x〉 it’s jogged into when you measure Sx

Measurements are often incompatible because the set {|q〉}
is particular to Q

|ψ〉Sz ;|a|2−→ | ↑ z〉
Sx;

1
2−→| ↑ x〉

Sz ;
1
2−→| ↓ z〉

‘uncertainty principle’
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Bras

It’s important to have a tool to extract from |ψ〉 the
amplitude an to measure, say, energy En

Let the states with definite energy be denoted |Ei〉
Then we define a matching set of functions 〈Ei| by the
equation 〈Ei|Ej〉 = δij

This rule & the linearity of the functions enables us to
evaluate the functions on any state:

〈Ei|ψ〉 = 〈Ei|
(

∑

j

aj |Ej〉
)

=
∑

j

ajδij = ai

〈φ|ψ〉 is a bra-ket (PAM Dirac)
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Observables & operators

With bras we can define an operator H =
∑

n |En〉En〈En|
H turns kets into kets: H|ψ〉 = ∑

n |En〉En〈En|ψ〉
We have H|Em〉 = Em|Em〉, an eigenvalue equation

so H is the operator with eigenvalues En & eigenkets |En〉
By this procedure every observable yields an operator

None is as important as the Hamiltonian H on account of
the Time Dependent Schrödinger Equation (TDSE)

i~
d|ψ〉
dt

= H|ψ〉
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composite systems

Now consider a system with 2 qubits

Homework: show that any 2-qubit state can be expressed
as a linear combination of

| ↑〉| ↑〉, | ↑〉| ↓〉, | ↓〉| ↑〉, | ↓〉| ↓〉

or by shorthand | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉
In | ↑↑〉 both qubits are certain to return up, etc

That is, always |ψ〉 = c↑↑| ↑↑〉+ c↑↓| ↑↓〉+ c↓↑| ↓↑〉+ c↓↓| ↓↓〉
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Entanglement

If |ψ〉 = | ↑〉
(

| ↑〉+ | ↓〉
)

/
√
2

S
(1)
z is certain to return ↑
S
(2)
z has p = 1

2 to return either ↑ or ↓
Measuring S

(1)
z doesn’t change |ψ〉

Measuring S
(2)
z collapses

|ψ〉S
(2)
z−→

{

| ↑〉| ↑〉 with p = 1
2

| ↑〉| ↓〉 with p = 1
2

so whatever the outcome, S
(1)
z still certain ton yield

↑correlated/
The odds on the remaining measurement are unchanged by
measuring one spin:
the spins aren’t correlated/entangled
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Entanglement

With ψ = (| ↑〉| ↓〉+ | ↓〉| ↑〉)/
√
2 it’s different:

|ψ〉S
(1)
z−→

{

| ↑〉| ↓〉 with p = 1
2

| ↓〉| ↑〉 with p = 1
2

After the first measurement the result of the second
becomes certain
The spins are entangled

These are examples of a general result

Systems are correlated/entangled if and only if their state
in not a product state |φ〉|φ′〉
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EPR experiment

The entangled 2-spin state

|0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉)

has zero spin because the two gyros are anti-aligned

|0〉 provides the cleanest version of an scenario first
considered by Einstein, Podolsky & Rosen (1935)

Alice: Sz −→ | ↑〉: |ψ〉 −→ | ↑〉| ↓〉
Alice: Sx −→ either | ↑ x〉| ↓ x〉 or | ↓ x〉| ↑ x〉
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EPR experiment

EPR wrote

‘as a consequence of two different measurements performed
upon the first system, the second system may be left in
states with two different wavefunctions. On the other hand,
since at the time of measurement the two systems no longer
interact, no real change can take place in the second
system...Hence two different wavefunctions can be assigned
to the same reality’
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Resolution of EPR experiment

Yes two states one reality because state reflects knowledge

Until Alice acts, the positron doesn’t have a state

By measuring her electron Alice gains information about
the positron needed to assign it a state

Alice changes the pair’s state by jogging it

She doesn’t discover the orientation of the electron before
she jogged it, so she doesn’t discover the positron’s
orientation

Bob’s measurement is not affected by Alice’s though it is
correlated with hers
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Summary

QM makes statistical predictions from complex amplitudes

States are defined by sets of complex numbers

Measurements jog the system into specific states

Observables are associated with operators

When systems are combined, correlations are likely

Subsystems have wavefunctions only when uncorrelated
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